
CMPLXFOIL

MDO Lab

Oct 06, 2022

CONTENTS

1 Installation 3
1.1 Requirements . 3
1.2 Build and Installation . 3
1.3 Verification . 4

2 Optimization Tutorial 5
2.1 Introduction . 5
2.2 Getting set up . 5
2.3 Dissecting the optimization script . 5
2.4 Run it yourself! . 11

3 Options 13

4 CMPLXFOIL API 15
4.1 CMPLXFOIL . 15
4.2 AnimateAirfoilOpt . 20

5 Citation 21

6 Disclaimer 23

Index 25

i

ii

CMPLXFOIL

CMPLXFOIL is a version of Mark Drela’s XFOIL code with the GUI features removed. Gradient computation is
implemented with the complex-step method. The Python interface is designed to be used with MACH-Aero tools for
optimization. This package also includes some postprocessing tools.

CONTENTS 1

https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/index.html

CMPLXFOIL

2 CONTENTS

CHAPTER

ONE

INSTALLATION

CMPLXFOIL is a Python wrapper for the Fortran-based XFOIL code. Building and installing the code is a multi-step
process that is machine specific. This guide goes through the required steps to compile and install CMPLXFOIL.

1.1 Requirements

To compile the required XFOIL core components, a Fortran and a C compiler must be installed on your system. This
can be GNU / GFortran or Intel, default configuration files are packaged for both types of compilers.

In addition to standard compilers, CMPLXFOIL requires the following dependencies:

Package Version Notes
Python 3.X.X
NumPy — conda install numpy or pip install numpy
baseclasses — pip install mdolab-baseclasses
pyGeo — optional; required for getTriangulatedMeshSurface method
matplotlib — optional; required for plotAirfoil method (pip install matplotlib)
niceplots — optional; recommended for plotAirfoil method (pip install niceplots)

1.2 Build and Installation

Building CMPLXFOIL is handeled automatically by a set of Makefiles which are distributed with the code. These
Makefiles require configuration files which specify machine-specific parameters, such as compiler locations and flags.
Default configuration files for Linux GCC and Linux Intel are included in the config/defaults directory. Copy a
configuration file to the main config/ folder using the command below and modify its contents for your system and
installation.

$ cp config/defaults/config.<version>.mk config/config.mk

Once the configuration file is adjusted as needed, CMPLXFOIL can be built by running make in the root directory:

$ make

This will compile both the real and complex versions of CMPLXFOIL, generating Python libraries which reference
the XFOIL Fortran modules. These will be automatically copied to the cmplxfoil/ directory.

Once the Python libraries are generated, install CMPLXFOIL by running pip install in the root directory:

$ pip install .

3

https://github.com/mdolab/baseclasses
https://github.com/mdolab/pygeo

CMPLXFOIL

1.3 Verification

Tests are located in the tests/ directory and can be run with the command:

$ testflo -v .

4 Chapter 1. Installation

CHAPTER

TWO

OPTIMIZATION TUTORIAL

2.1 Introduction

This section describes a sample run script for airfoil optimization with CMPLXFOIL. It is very similar to the MACH-
Aero single point airfoil tutorial. This example uses pyOptSparse’s SLSQP optimizer because it comes with py-
OptSparse, but SNOPT is recommended for more robustness, speed, and tunability.

The optimization problem solved in this script is

minimize
𝐶𝐷

with respect to
4 upper surface shape variables (CST coefficients)
4 lower surface shape variables (CST coefficients)

subject to
𝐶𝐿 = 0.5

𝑉 ≥ 0.85𝑉0

𝑅𝐿𝐸 ≥ 0.85𝑅𝐿𝐸,0

𝑡 ≥ 0.25𝑡0
First upper surface CST coefficient = first lower surface CST coefficient

2.2 Getting set up

In addition to the required CMPLXFOIL packages, this script requires pygeo, multipoint, pyoptsparse, and mpi4py.
The script can be found in CMPLXFOIL/examples/single_point.py.

2.3 Dissecting the optimization script

2.3.1 Import libraries

import os
import numpy as np
from mpi4py import MPI
from baseclasses import AeroProblem

(continues on next page)

5

https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/airfoilopt_singlepoint.html
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/airfoilopt_singlepoint.html
https://github.com/mdolab/pygeo
https://github.com/mdolab/multipoint
https://github.com/mdolab/pyoptsparse

CMPLXFOIL

(continued from previous page)

from pygeo import DVConstraints, DVGeometryCST
from pyoptsparse import Optimization, OPT
from multipoint import multiPointSparse
from cmplxfoil import CMPLXFOIL, AnimateAirfoilOpt

2.3.2 Specifying parameters for the optimization

These parameters define the flight condition and initial angle of attack for the optimization.

mycl = 0.5 # lift coefficient constraint
alpha = 0.0 if mycl == 0.0 else 1.0 # initial angle of attack (zero if the target cl is␣
→˓zero)
mach = 0.1 # Mach number
Re = 1e6 # Reynolds number
T = 288.15 # 1976 US Standard Atmosphere temperature @ sea level (K)

2.3.3 Creating processor sets

Allocating sets of processors for different analyses can be helpful for multiple design points, but this is a single point
optimization, so only one point is added.

MP = multiPointSparse(MPI.COMM_WORLD)
MP.addProcessorSet("cruise", nMembers=1, memberSizes=MPI.COMM_WORLD.size)
MP.createCommunicators()

2.3.4 Creating output directory

This section creates a directory in the run script’s directory in which to save files from the optimization.

curDir = os.path.abspath(os.path.dirname(__file__))
outputDir = os.path.join(curDir, "output")

if not os.path.exists(outputDir):
os.mkdir(outputDir)

2.3.5 CMPLXFOIL solver setup

The options tell the solver to write out chordwise aerodynamic data (writeSliceFile) and the airfoil coordinates
(writeCoordinates) every time it is called. It also enables live plotting during the optimization (plotAirfoil).
Finally, it specifies the output directory to save these files.

aeroOptions = {
"writeSolution": True,
"writeSliceFile": True,
"writeCoordinates": True,
"plotAirfoil": True,

(continues on next page)

6 Chapter 2. Optimization Tutorial

CMPLXFOIL

(continued from previous page)

"outputDirectory": outputDir,
}

Create solver
CFDSolver = CMPLXFOIL(os.path.join(curDir, "naca0012.dat"), options=aeroOptions)

Other options allow the user to adjust the maximum iterations allowed to the XFOIL solver and to specify a location at
which to trip the boundary layer.

2.3.6 Set the AeroProblem

We add angle of attack as a design variable (if the target lift coefficient is not zero) and set up the AeroProblem using
given flow conditions.

ap = AeroProblem(
name="fc",
alpha=alpha if mycl != 0.0 else 0.0,
mach=mach,
reynolds=Re,
reynoldsLength=1.0,
T=T,
areaRef=1.0,
chordRef=1.0,
evalFuncs=["cl", "cd"],

)
Add angle of attack variable
if mycl != 0.0:

ap.addDV("alpha", value=ap.alpha, lower=-10.0, upper=10.0, scale=1.0)

2.3.7 Geometric parametrization

This examples uses a class-shape transformation (CST) airfoil parameterization because it requires no additional files
or other setup. Four CST parameters are added to the upper and lower surface (the class shape and chord length are
other possible design variables through DVGeometryCST). The DVGeometryCST instance will set the initial design
variables values by fitting them to the input dat file’s geometry.

nCoeff = 4 # number of CST coefficients on each surface
DVGeo = DVGeometryCST(os.path.join(curDir, "naca0012.dat"), numCST=nCoeff)

DVGeo.addDV("upper_shape", dvType="upper", lowerBound=-0.1, upperBound=0.5)
DVGeo.addDV("lower_shape", dvType="lower", lowerBound=-0.5, upperBound=0.1)

Add DVGeo object to CFD solver
CFDSolver.setDVGeo(DVGeo)

2.3. Dissecting the optimization script 7

CMPLXFOIL

2.3.8 Geometric constraints

In this section, we add volume, thickness, and leading edge radius constraints. They are chosen to achieve practical
airfoils and to guide the optimizer away from infeasible design, such as the upper and lower surfaces crossing over each
other.

DVCon = DVConstraints()
DVCon.setDVGeo(DVGeo)
DVCon.setSurface(CFDSolver.getTriangulatedMeshSurface())

Thickness, volume, and leading edge radius constraints
le = 0.0001
wingtipSpacing = 0.1
leList = [[le, 0, wingtipSpacing], [le, 0, 1.0 - wingtipSpacing]]
teList = [[1.0 - le, 0, wingtipSpacing], [1.0 - le, 0, 1.0 - wingtipSpacing]]
DVCon.addVolumeConstraint(leList, teList, 2, 100, lower=0.85, scaled=True)
DVCon.addThicknessConstraints2D(leList, teList, 2, 100, lower=0.25, scaled=True)
le = 0.01
leList = [[le, 0, wingtipSpacing], [le, 0, 1.0 - wingtipSpacing]]
DVCon.addLERadiusConstraints(leList, 2, axis=[0, 1, 0], chordDir=[-1, 0, 0], lower=0.85,␣
→˓scaled=True)

fileName = os.path.join(outputDir, "constraints.dat")
DVCon.writeTecplot(fileName)

2.3.9 Optimization callback functions

This section defines callback functions that are used by the optimizer to get objective, constraint, and derivative infor-
mation. See the MACH-Aero aerodynamic optimization tutorial for more information.

def cruiseFuncs(x):
print(x)
Set design vars
DVGeo.setDesignVars(x)
ap.setDesignVars(x)
Run CFD
CFDSolver(ap)
Evaluate functions
funcs = {}
DVCon.evalFunctions(funcs)
CFDSolver.evalFunctions(ap, funcs)
CFDSolver.checkSolutionFailure(ap, funcs)
if MPI.COMM_WORLD.rank == 0:

print("functions:")
for key, val in funcs.items():

if key == "DVCon1_thickness_constraints_0":
continue

print(f" {key}: {val}")
return funcs

def cruiseFuncsSens(x, funcs):
(continues on next page)

8 Chapter 2. Optimization Tutorial

https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_aero.html

CMPLXFOIL

(continued from previous page)

funcsSens = {}
DVCon.evalFunctionsSens(funcsSens)
CFDSolver.evalFunctionsSens(ap, funcsSens)
CFDSolver.checkAdjointFailure(ap, funcsSens)
print("function sensitivities:")
evalFunc = ["fc_cd", "fc_cl", "fail"]
for var in evalFunc:

print(f" {var}: {funcsSens[var]}")
return funcsSens

def objCon(funcs, printOK):
Assemble the objective and any additional constraints:
funcs["obj"] = funcs[ap["cd"]]
funcs["cl_con_" + ap.name] = funcs[ap["cl"]] - mycl
if printOK:

print("funcs in obj:", funcs)
return funcs

2.3.10 Optimization problem

This section sets up the optimization problem by adding the necessary design variables and constraints. An additional
constraint for this problem enforces that the first upper and lower surface CST coefficients are equal. This is to maintain
continuity on the leading edge. It also prints out some useful information about the optimization problem setup. See
the MACH-Aero aerodynamic optimization tutorial for more information.

Create optimization problem
optProb = Optimization("opt", MP.obj)

Add objective
optProb.addObj("obj", scale=1e4)

Add variables from the AeroProblem
ap.addVariablesPyOpt(optProb)

Add DVGeo variables
DVGeo.addVariablesPyOpt(optProb)

Add constraints
DVCon.addConstraintsPyOpt(optProb)

Add cl constraint
optProb.addCon("cl_con_" + ap.name, lower=0.0, upper=0.0, scale=1.0)

Enforce first upper and lower CST coefficients to add to zero
to maintain continuity at the leading edge
jac = np.zeros((1, nCoeff), dtype=float)
jac[0, 0] = 1.0
optProb.addCon(

(continues on next page)

2.3. Dissecting the optimization script 9

https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_aero.html

CMPLXFOIL

(continued from previous page)

"first_cst_coeff_match",
lower=0.0,
upper=0.0,
linear=True,
wrt=["upper_shape", "lower_shape"],
jac={"upper_shape": jac, "lower_shape": jac},

)

The MP object needs the 'obj' and 'sens' function for each proc set,
the optimization problem and what the objcon function is:
MP.setProcSetObjFunc("cruise", cruiseFuncs)
MP.setProcSetSensFunc("cruise", cruiseFuncsSens)
MP.setObjCon(objCon)
MP.setOptProb(optProb)
optProb.printSparsity()
optProb.getDVConIndex()

2.3.11 Run optimization

Run the optimization using pyOptSparse’s SLSQP optimizer and print the solution.

Run optimization
optOptions = {"IFILE": os.path.join(outputDir, "SLSQP.out")}
opt = OPT("SLSQP", options=optOptions)
sol = opt(optProb, MP.sens, storeHistory=os.path.join(outputDir, "opt.hst"))
if MPI.COMM_WORLD.rank == 0:

print(sol)

2.3.12 Postprocessing

Finally, we save the final figure and use the built-in animation utility to create an optimization movie.

Save the final figure
CFDSolver.airfoilAxs[1].legend(["Original", "Optimized"], labelcolor="linecolor")
CFDSolver.airfoilFig.savefig(os.path.join(outputDir, "OptFoil.pdf"))

Animate the optimization
AnimateAirfoilOpt(outputDir, "fc").animate(

outputFileName=os.path.join(outputDir, "OptFoil"), fps=10, dpi=300, extra_args=["-
→˓vcodec", "libx264"]
)

10 Chapter 2. Optimization Tutorial

CMPLXFOIL

2.4 Run it yourself!

To run the script, use the following command:

$ python single_point.py

In the output directory, it should create the following animation after the optimization completes:

2.4. Run it yourself! 11

CMPLXFOIL

12 Chapter 2. Optimization Tutorial

CHAPTER

THREE

OPTIONS

maxIters: int = 100

The maximum iterations for XFOIL solver. By default 100.

writeCoordinates: bool = True

If True, it will write airfoil coordinates to dat file when writeSolution is called. By default True.

writeSliceFile: bool = True

If True, it will save chordwise data in a pickle file when writeSolution is called. By default True.

writeSolution: bool = False

If True, it will call writeSolution when the solver is called with an AeroProblem. By default False).

plotAirfoil: bool = False

If True, it will show airfoil plot with cp and cf data when writeSolution is called. By default False.

outputDirectory: str = .

The directory to save the output files. By default the current directory.

numberSolutions: bool = True

If True, will add call counter to output file names. By default True.

xTrip: ndarray = numpy.full

The boundary layer trip location specified as a two-element numpy array where the first element is the chordwise
location at which to trip the upper surface and the second is the chordwise location at which to trip the lower
surface. By default will not trip the boundary layer and instead use XFOIL’s transition model.

13

CMPLXFOIL

14 Chapter 3. Options

CHAPTER

FOUR

CMPLXFOIL API

4.1 CMPLXFOIL

class cmplxfoil.CMPLXFOIL(*args, **kwargs)
CMPLXFOIL Class Initialization

Parameters

fileName
[str] Filename of DAT file to read in

options
[dict of option-value pairs, optional] Options for the solver. Available options can be found
in the Options section of the documentation or the options.yaml file in the docs directory.

debug
[bool, optional] Set this flag to true when debugging with a symbolic debugger. The MExt
module deletes the copied .so file when not required which causes issues debugging, by
default False

checkAdjointFailure(aeroProblem, funcsSens)
Pass through to checkSolutionFailure to maintain the same interface as ADflow.

This checks if the primal solve fails and can be called when the sensitivity is being evaluated (either through
FD or CS).

Parameters

aeroProblem
[pyAero_problem class] The aerodynamic problem to to get the solution for

funcsSens
[dict] Dictionary into which the functions are saved.

checkSolutionFailure(aeroProblem, funcs)
Take in a an aeroProblem and check for failure.

Then append the fail flag in funcs. Information regarding whether or not the last analysis with the aeroProb-
lem was sucessful is included. This information is included as “funcs[‘fail’]”. If the ‘fail’ entry already
exits in the dictionary the following operation is performed:

funcs[‘fail’] = funcs[‘fail’] or <did this problem fail>

In other words, if any one problem fails, the funcs[‘fail’] entry will be True. This information can then be
used directly in multiPointSparse. For direct interface with pyOptSparse the fail flag needs to be returned
separately from the funcs.

15

CMPLXFOIL

Parameters

aeroProblem
[pyAero_problem class] The aerodynamic problem to get the solution for

funcs
[dict] Dictionary into which the functions are saved.

computeJacobianVectorProductFwd(xDvDot=None, xSDot=None, mode='CS', h=None)
This the main Python gateway for producing forward mode jacobian vector products. They are computed
using either the complex step or finite difference method. This function is not generally called by the user
but rather internally or from another solver. A DVGeo object must be set for this routine.

Parameters

xDvDot
[dict] Perturbation on the design variables

xSDot
[numpy array] Perturbation on the surface

mode
[str [“FD” or “CS”]] Specifies how the jacobian vector products will be computed

h
[float] Step sized used when the mode is “FD” or “CS” (must be complex if mode = “CS”),
by default 1e-6 for FD and 1e-200j for CS

Returns

dict
Jacobian vector product of evalFuncs given perturbation

evalFunctions(aeroProblem, funcs, evalFuncs=None, ignoreMissing=False)
This is the main routine for returning useful information from CMPLXFOIL. The functions corresponding
to the strings in evalFuncs are evaluated and updated into the provided dictionary.

Parameters

aeroProblem
[AeroProblem instance] Aero problem from which to pull evalFuncs and flight conditions.

funcs
[dict] Dictionary into which the functions are saved.

evalFuncs
[iterable object containing strings] If not none, use these functions to evaluate.

ignoreMissing
[bool] Flag to supress checking for a valid function. Please use this option with caution.

evalFunctionsSens(aeroProblem, funcsSens, evalFuncs=None, mode='CS', h=None)
Evaluate the sensitivity of the desired functions given in iterable object, ‘evalFuncs’ and add them to the
dictionary ‘funcSens’. The keys in the ‘funcsSens’ dictionary will be have an <ap.name>_ prepended to
them.

Parameters

funcsSens
[dict] Dictionary into which the function derivatives are saved

16 Chapter 4. CMPLXFOIL API

https://mdolab-baseclasses.readthedocs-hosted.com/en/latest/pyAero_problem.html#baseclasses.AeroProblem

CMPLXFOIL

evalFuncs
[iterable object containing strings] The additional functions the user wants returned that
are not already defined in the aeroProblem

mode
[str [“FD” or “CS”]] Specifies how the jacobian vector products will be computed

h
[float] Step sized used when the mode is “FD” or “CS” (must be complex if mode = “CS”)

getCoordinates()

Return the current airfoil coordinates

Returns

coords
[ndarray] Airfoil coordinates with each column being (x, y, z) where z is a dummy value.

getTriangulatedMeshSurface(offsetDist=1.0)
This function returns a pyGeo surface. The intent is to use this for DVConstraints.

Note: This method requires the pyGeo library

Parameters

offsetDist
[float] Distance to extrude airfoil (same units as airfoil coordinates)

Returns

pyGeo surface
Extruded airfoil surface

plotAirfoil(fileName=None, showPlot=True)
Plots the current airfoil and returns the figure.

Parameters

fileName
[str, optional] FileName to save to, if none specified it will show the plot with plt.show()

showPlot
[bool, optional] Pop open the plot, by default True

Returns

matplotlib figure
Figure with airfoil plotted to it

list of matplotlib axes
List of matplotlib axes for CP and airfoil plots (in that order)

setAeroProblem(aeroProblem)

Sets the aeroProblem to by used by CMPLXFOIL.

Parameters

aeroProblem
[AeroProblem instance] Aero problem to set (gives flight conditions)

4.1. CMPLXFOIL 17

https://mdolab-baseclasses.readthedocs-hosted.com/en/latest/pyAero_problem.html#baseclasses.AeroProblem

CMPLXFOIL

setCoordinates(coords)
Update the airfoil coordinates and associated point sets.

Parameters

coords
[ndarray] New airfoil coordinates (either 2 or 3 columns)

setCoordinatesComplex(coords)
Update the complex airfoil coordinates and associated point sets.

Parameters

coords
[ndarray] New airfoil coordinates (either 2 or 3 columns)

setDVGeo(DVGeo, pointSetKwargs=None)
Set the DVGeometry object that will manipulate ‘geometry’ in this object. Note that CMPLXFOIL does
not strictly need a DVGeometry object, but if optimization with geometric changes is desired, then it is
required.

Parameters

DVGeo
[A DVGeometry object.] Object responsible for manipulating the constraints that this ob-
ject is responsible for.

pointSetKwargs
[dict] Keyword arguments to be passed to the DVGeo addPointSet call. Useful for DVGe-
ometryMulti, specifying FFD projection tolerances, etc

solveCL(aeroProblem, CLStar, alpha0=None, alphaBound=None, delta=0.5, tol=0.001,
CLalphaGuess=None, maxIter=20, useNewton=False)

Find the angle of attack that gives a target lift coefficient.

Parameters

aeroProblem
[pyAero_problem class] The aerodynamic problem to solve

CLStar
[float] The desired CL

alpha0
[float, optional] Initial guess for secant search (deg). If None, use the value in the aero-
Problem, by default None

alphaBound
[float, tuple, list, optional] Bounds for angle of attack, if scalar then value is treated as a +-
bound, by default None, in which case limit is +/-15 deg

delta
[float, optional] Initial step direction for secant search, by default 0.5

tol
[float, optional] Desired tolerance for CL, by default 1e-3

CLalphaGuess
[float, optional] The user can provide an estimate for the lift curve slope in order to accel-
erate convergence. If the user supplies a value to this option, it will not use the delta value
anymore to select the angle of attack of the second run. The value should be in 1/deg., by
default None

18 Chapter 4. CMPLXFOIL API

CMPLXFOIL

maxIter
[int, optional] Maximum number of iterations, by default 20

useNewton
[bool, optional] If True, Newton’s method will be used where the dCL/dAlpha is computed
using complex-step, otherwise the secant method is used, by default False

Returns

None, but the correct alpha is stored in the aeroProblem

writeCoordinates(fileName)
Write dat file with the current coordinates.

Parameters

fileName
[str] File name for saved dat file (“.dat” will be automatically appended).

writeSlice(fileName)
Write pickle file containing the sliceData dictionary. The data can be accessed using the AeroProblem name
as the key. Within that is a dictionary containing

• Pressure coefficient data on the upper surface

– "cp_visc_upper": viscous CP on the airfoil’s upper surface

– "cp_invisc_upper": inviscid CP on the airfoil’s upper surface

– "x_upper": x coordinates of the upper surface CP data

– "y_upper": y coordinates of the upper surface CP data

• Pressure coefficient data on the lower surface

– "cp_visc_lower": viscous CP on the airfoil’s lower surface

– "cp_invisc_lower": inviscid CP on the airfoil’s lower surface

– "x_lower": x coordinates of the lower surface CP data

– "y_lower": y coordinates of the lower surface CP data

• Skin friction coefficient data on the upper surface

– "cf_upper": skin friction coefficient on the upper surface

– "x_cf_upper": x coordinates of upper surface skin friction coefficient

– "y_cf_upper": y coordinates of upper surface skin friction coefficient

• Skin friction coefficient data on the lower surface

– "cf_lower": skin friction coefficient on the lower surface

– "x_cf_lower": x coordinates of lower surface skin friction coefficient

– "y_cf_lower": y coordinates of lower surface skin friction coefficient

Parameters

fileName
[str] File name for saved pkl file (“.pkl” will be automatically appended).

4.1. CMPLXFOIL 19

CMPLXFOIL

writeSolution(outputDir=None, baseName=None, number=None)
This is a generic shell function that potentially writes the various output files. The intent is that the user
or calling program can call this file and CMPLXFOIL write all the files that the user has defined. It is
recommended that this function is used along with the associated logical flags in the options to determine
the desired writing procedure.

Parameters

outputDir
[str] Use the supplied output directory

baseName
[str] Use this supplied string for the base filename. Typically only used from an external
solver.

number
[int] Use the user supplied number to index solution. Again, only typically used from an
external solver.

4.2 AnimateAirfoilOpt

class cmplxfoil.AnimateAirfoilOpt(dirName, APName)
Class for generating animations of airfoil optimization

Initialize the object with the directory and AeroProblem name. This object assumes that the files are accessible
under the name <dirName>/<APName>_<iteration number>.<dat or pkl> and that BOTH dat (airfoil shape) and
pkl (chordwise data) files are available.

Parameters

dirName
[str] Name of directory that contains the airfoil optimization data files

APName
[str] Name of the AeroProblem to be animated.

animate(outputFileName='airfoil_opt', ext='mp4', **animKwargs)
Generate an animation of an optimization.

Parameters

outputFileName
[str, optional] Movie filename to save to with no extension (default “airfoil_opt”)

ext
[str, optional] Extension for animation (“mp4” and “gif” are useful ones)

animKwargs
[optional] Additional keyword arguments to be passed to matplotlib’s FuncAnimation save
method

20 Chapter 4. CMPLXFOIL API

CHAPTER

FIVE

CITATION

If you use CMPLXFOIL, please cite the following paper for XFOIL:

• Drela M. (1989) XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In: Mueller T.J.
(eds) Low Reynolds Number Aerodynamics. Lecture Notes in Engineering, vol 54. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-84010-4_1

@InProceedings{XFOIL,
author = Mark Drela,
editor = Thomas J. Mueller,
title = {XFOIL}: {A}n {A}nalysis and {D}esign {S}ystem for {L}ow {R}eynolds {N}

→˓umber {A}irfoils,
booktitle = {L}ow {R}eynolds {N}umber {A}erodynamics,
year = 1989,
publisher = {S}pringer {B}erlin {H}eidelberg,
address = {Berlin, Heidelberg},
pages = 1--12,
isbn = 978-3-642-84010-4,
doi = 10.1007/978-3-642-84010-4_1

}

21

https://doi.org/10.1007/978-3-642-84010-4_1

CMPLXFOIL

22 Chapter 5. Citation

CHAPTER

SIX

DISCLAIMER

XFOIL’s derivatives are known to be unreliable due to its transition model. Because this is a result of the numerical
simulation approach, using a complex step derivative computation method still faces these problems.

Adler, Gray, and Martins describe this phenomenon in their paper entitled To CFD or not to CFD? Comparing RANS
and viscous panel methods for airfoil shape optimization. They observe that these inaccurate derivatives can create
local optima. To visualize the behavior, they evaluate drag along a line in the design space between two optima. The
result is shown below. Every dip corresponds to the transition location moving across one panel. Increasing the number
of panels helps (CMPLXFOIL uses 284 panels by default), but does not fix the problem.

23

CMPLXFOIL

24 Chapter 6. Disclaimer

INDEX

A
animate() (cmplxfoil.AnimateAirfoilOpt method), 20
AnimateAirfoilOpt (class in cmplxfoil), 20

C
checkAdjointFailure() (cmplxfoil.CMPLXFOIL

method), 15
checkSolutionFailure() (cmplxfoil.CMPLXFOIL

method), 15
CMPLXFOIL (class in cmplxfoil), 15
computeJacobianVectorProductFwd() (cmplx-

foil.CMPLXFOIL method), 16

E
evalFunctions() (cmplxfoil.CMPLXFOIL method), 16
evalFunctionsSens() (cmplxfoil.CMPLXFOIL

method), 16

G
getCoordinates() (cmplxfoil.CMPLXFOIL method),

17
getTriangulatedMeshSurface() (cmplx-

foil.CMPLXFOIL method), 17

M
maxIters (built-in variable), 13

N
numberSolutions (built-in variable), 13

O
outputDirectory (built-in variable), 13

P
plotAirfoil (built-in variable), 13
plotAirfoil() (cmplxfoil.CMPLXFOIL method), 17

S
setAeroProblem() (cmplxfoil.CMPLXFOIL method),

17

setCoordinates() (cmplxfoil.CMPLXFOIL method),
17

setCoordinatesComplex() (cmplxfoil.CMPLXFOIL
method), 18

setDVGeo() (cmplxfoil.CMPLXFOIL method), 18
solveCL() (cmplxfoil.CMPLXFOIL method), 18

W
writeCoordinates (built-in variable), 13
writeCoordinates() (cmplxfoil.CMPLXFOIL

method), 19
writeSlice() (cmplxfoil.CMPLXFOIL method), 19
writeSliceFile (built-in variable), 13
writeSolution (built-in variable), 13
writeSolution() (cmplxfoil.CMPLXFOIL method), 19

X
xTrip (built-in variable), 13

25

	Installation
	Requirements
	Build and Installation
	Verification

	Optimization Tutorial
	Introduction
	Getting set up
	Dissecting the optimization script
	Import libraries
	Specifying parameters for the optimization
	Creating processor sets
	Creating output directory
	CMPLXFOIL solver setup
	Set the AeroProblem
	Geometric parametrization
	Geometric constraints
	Optimization callback functions
	Optimization problem
	Run optimization
	Postprocessing

	Run it yourself!

	Options
	CMPLXFOIL API
	CMPLXFOIL
	AnimateAirfoilOpt

	Citation
	Disclaimer
	Index

